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Abstract. Statistical analysis starts with the assessment of the distribution of experimental data. Different statistics 

are used to test the null hypothesis (H0) stated as Data follow a certain/specified distribution. In this paper, a new 

test based on Shannon’s entropy (called Shannon’s entropy statistic, H1) is introduced as goodness-of-fit test. The 

performance of the Shannon’s entropy statistic was tested on simulated and/or experimental data with uniform and 

respectively four continuous distributions (as error function, generalized extreme value, lognormal, and normal). 

The experimental data used in the assessment were properties or activities of active chemical compounds. Five 

known goodness-of-fit tests namely Anderson-Darling, Kolmogorov-Smirnov, Cramér-von Mises, Kuiper V, and 

Watson U2 were used to accompany and assess the performances of H1. 
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1. Introduction  

Different statistical tests are used to assess the 

agreement between theoretical probability models 

and measured data as an early step in the statistical 

analysis of experimental data. Kolmogorov-Smirnov 

(KS) [1,2], Anderson-Darling (AD) [3,4], Pearson’s 

Chi-square (CS) [5, 6], Cramér-von-Mises (CM) [7, 

8], Shapiro-Wilk (SW) [9], Jarque-Bera (JB) [10-12], 

D’Agostino-Pearson [13], Lilliefors [14], or Shapiro-

Francia (SF) [15] are just several tests that are 

classically implemented in commercial or non-

commercial statistical software. Kolmogorov-

Smirnov test is an order statistic that applied only on 

continuous distributions and is known to be less 

sensitive at the tails of the distribution [16]. Cramér-

von-Mises [7,8] and AD [3,4] are refinements of the 

KS test that gives more weight to the tails [17], both 

tests being known as empirical distribution function 

(EDF) tests [18]. The critical values of AD test 

depend of the distribution that is tested. Pearson’s 

Chi-square is an alternative to the K-S and A-D tests 

and its application is valid only if the values in each 

bin exceed five [18]. 

A small group of known theoretical probability 

distributions is usually used to describe or to 

approximate measured data, and the normal 

distribution is the most extensively used [19]. A 

parametric test is applied whenever data follow the 

normal distribution; otherwise a non-parametric test 
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fit better to analyze the experimental data [20-22]. 

The normal distribution was by far the most studied. 

Monte Carlo experiments conducted on different 

sample sizes showed that SW test is the most 

powerful while opposite KS test is less powerful in 

the assessment of normal distribution [23]. Tui 

proved that Anderson-Darling assures validity and 

inference based on t-statistic compared with JB, SF, 

D’Agostino & Pearson, and AD & Lilliefors [24]. 

Islam applied stringency concept using the LR-tests 

to rank the normality tests and concluded that the best 

normality test is Anderson-Darling [25]. Mbah and 

Paothong used the expected p-value approach to 

characterize the normality test and showed that SF 

test is the best statistic in detecting deviation from 

normality when compared with KS, AD, CM, 

Lilliefors, SW, CS, JB, and D'Agostino [26]. The 

scientific community shows attention not just to the 

assessment of the existing tests but also to 

development and validation of new tests. New 

approaches are reported to test certain distributions of 

measured/observed data, such as mean and quantile 

statistics based on the posterior predictive 

distribution [27], quantile-mean covariance [28], 

empirical distribution function [29], maximum 

entropy [30], Kullback-Leibler measure [31], sums of 

squares in decomposition of the Shapiro-Wilk-type 

statistic [32], Euclidean distance between sample 
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elements for assessment of multivariate normality 

[33], or entropy estimators [34]. 

2. Materials and methods 

Shannon’s Entropy Statistic 

The use of entropy as a test statistic is not a novel 

approach. Vasicek introduced in 1976 using entropy 

(the entropy of a normal distribution exceeds the 

values of any other distributions) a new goodness-of-

fit test for normal distribution [35]. In the same year, 

Prescott tested the sensitivity of the normality test 

introduced by Vasicek and showed that the new test 

is less sensitive to the outliers [36]. The test 

introduced by Vasicek was also used to test other 

distributions (exponential, Gamma, uniform, 

Beta(2,1), and Cauchy) and obtained the highest 

power as compared with KS, CM, Kuiper, Watson 

U2, AD, and SW tests for exponential (85%) and for 

uniform distribution (44%) while the smallest power 

was obtained for Cauchy distribution [36]. Different 

approaches were applied to estimate entropy and 

based on the new introduced estimators (e.g. 

modified Vasicek’s estimator [37,38], Noughabi’s 

entropy estimator [39]) new goodness-of-fit tests 

were developed and performances in testing the 

normal [40-42], lognormal [43], uniform [44-46], 

exponential [47], beta [47,48], Poisson [49], Weibull 

[43], Gamma [43], Pareto [50,51], Student and 

exponential distribution [52] were studied. 

A statistic provides the correct conclusion in 

regards of null hypothesis (H0) whenever data did not 

contain any outlier or extreme value [53]. A simple 

question arise: It is possible to construct a statistic 

able to provide the closest to the true answer in 

regards of testing the H0? A solution could be found 

by adapting the method proposed by Fisher [54] and 

discussed in the context of combining probability 

from multiple statistics [55]. An overall result based 

on several statistics is the best solution since most of 

the distributions has more than one degree of 

freedom. The degrees of freedom did not decrease by 

combining tests and could be considered independent 

since different tests implement different methods. In 

this regards, more than one statistics may fully cover 

the variation induced by the associated degrees of 

freedom.  

Goodness-of-fit test based on entropy already 

showed to be less sensitive to the presence of extreme 

values or outliers [36] so combining its results with 

other goodness-of-fit tests could provide a good 

overall solution. Shannon’s entropy generally refers 

to disorders or uncertainties [56] and here is 

introduced as statistic (H1) for evaluation of the 

distribution of experimental data. Its formula is given 

by Eq (1): 







1n

0i
iiii )f1ln()f1()fln(f1H  (1) 

where H1 is Shannon’s entropy statistic, n is the 

sample size, i iterates (in ascending order) the 

observations in the sample, fi is the cumulative 

distribution function (CDF) associated with the 

observation (sorted in ascending order). 

Shannon entropy was defined as a statistic for 

measurement of the distance between theoretical and 

observed distribution in a similar manner as other 

statistics (see Eq (2)-Eq (6)). 

Several specific features made the Shannon’s 

statistic enough different by all other investigated 

statistics. Shannon’s statistic is calculated without 

sorting the CDF (cumulative distribution function) 

values, as other statistics need. Thus, Shannon’s 

statistic is a 'clutter' statistics in the perfect agreement 

with the basic concept of entropy as a measure of 

disorder. The Shannon’s approach additively 

cumulates the entropy of each CDF value from the 

binary division that is constructed in the probability 

space of [0, 1]. 

The algorithm presented in Figure 1 was applied 

for H1 statistic.  

 

Figure 1. The steps applied to build the probability 

association map for the H1 statistic. The K was set 

to a large numeric value, e.g. 10,000 as presented 

below, k iterates the domain defined by 0 and K, and 

j iterates the control points of probability thresholds 

pj = j/1,000, e.g. 0.001, 0.002, …, 0.999. 

The algorithm presented in Figure 1 worked with 

a fixed value of the sample size (n) but can also be 

use by successive iterations for the value of n starting 

with n = 2. The large K value and eventually repeated 

resampling are used for increasing the resolution of 

the statistic's values. For the same purpose, for a 

value 0 ≤ x ≤ 1 the random is conducted in two steps, 

first for mantissa 

((10,000+Random(90,000))/100,000), and second 

for exponent (repeat k:=Random(10); if(k=0)then 

p[i]:=p[i]/10; until(k>0)). Furthermore, Mersenne 

Twister method [57] was involved to simulate 

randomness. The inverse of the statistic probability 

function from the above-provided algorithm was 

used to find the answer for H0 by H1 statistic. 

 

 

For 0 ≤ k ≤ 1000·K  

 ni0for,Randomf ]1,0[Uniformi   

 ))f((Sort)f( ni0iASCni0i    

 ))f((FormulaObserved ni0ik   

EndFor 

))Observed((Sort)Observed( Kk0kASCKk0k    

For 1 ≤ j ≤ 999 

 )Observed,Observed(MeanStatistic jK10001jK10001000/j   

EndFor 

The formula of each 

statistic enters here 
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Evaluation Methodology 

Comparison Statistics 

Five goodness-of-fit tests were also applied for 

each investigated null hypothesis:  

 Anderson-Darling statistic (AD) [3,4]: 
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 Kolmogorov-Smirnov statistic (KS) [1,2]: 
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 Cramér-von Mises statistic (CM) [7,8]: 
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 Kuiper V statistic (KV) [58]: 
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 Watson U2 statistic (WU) [59]: 
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where AD is the statistic of the Anderson-Darling 

test, KS is the statistic of the Kolmogorov-Smirnov 

test, CM is the statistic of the Cramér-von Mises test, 

KV is the statistic of the Kuiper V test, WU is the 

statistic of the Watson U2 test, n is the sample size, i 

iterates (in ascending order) the observations in the 

sample, fi is the cumulative distribution function 

(CDF) associated with the observation (sorted in 

ascending order). 

Simulated Datasets 

A simple random technique was used to generate 

forty-five samples of data following uniform 

distribution with volumes equal with 15, 20, 30, 40, 

and 50. Note that even this method is standardized 

operates with the same string of probabilities, case 

which is not seen when experimental data are 

investigated. These simulated datasets were used to 

characterize the new statistic (H1) as compared with 

statistics from Eq (2)-Eq (6).  

Experimental Datasets 

Measured/observed properties/activities on a 

series of chemical compounds with sample size from 

13 to 1714 were used to assessment the Shannon’s 

statistic. The main characteristics of the datasets 

included in the evaluation are provided in Table 1. 

Four statistic one-tailed null hypotheses (H0) 

were evaluated on experimental data:  

1. H0: The experimental data follow the error 

distribution 

2. H0: The experimental data follow the 

generalized extreme value distribution 

3. H0: The experimental data follow the lognormal 

distribution 

4. H0: The experimental data follow the normal 

distribution 

 

 

Table 1. Characteristics of datasets used in the assessment (n=sample size). 

Set Compounds Property/Activity n Ref 

01 phenols antioxidant activity 42 [60,61] 

02 drug-like compounds blood-brain barrier permeability 129 [62] 

03 estrogen receptors binders binding activity 144 [63] 

04 pure chemicals heat of combustion 1714 [64] 

05 different active compounds carcinogenicity (LD50) 39 [65] 

06 nitrocompounds carcinogenic potency 55 [66] 

07 substituted anilines and phenols toxicity to V. fischeri  57 [67] 

[67] 08 toxicity to P. subcapitata 58 

09 phenols toxicity to Tetrahymena pyriformis 250 [68] 

10 deacetylase LpxC-2-aryloxazolines, aroylserines, 

and 2-arylthiazolines 

inhibitors on Pseudomonas aeruginosa 51 [69] 

11 LpxC inhibitors inhibitory activity on gram-negative 41 [70] 

12 drug-like compounds aqueous solubility 166 [71] 

13 sulfonamide inhibition activity on carbonic anhydrase I 40 [72] 

[72] 

[72] 

14 inhibition activity on carbonic anhydrase II 40 

15 inhibition activity on carbonic anhydrase IV 40 

16 sulfonamides pKa 29 [73] 

17 aromatic sulfonamides inhibition activity on carbonic anhydrase II 43 [74] 

18 sulfonamides inhibition activity on carbonic anhydrase II 47 [75] 

19 aromatic/heterocyclic sulfonamides inhibition activity on carbonic anhydrase 38 [76-78] 

20 paclitaxel antimitotic activity - B16 melanoma 18 [79] 

[79] 

[79] 

21 antimitotic activity - MCF-7 17 

22 antimitotic activity - MCF-7-ADR 16 

23 taxoids resistance index to MCF-7 cell lines 63 [80] 
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Set Compounds Property/Activity n Ref 

24 taxoids cell growth inhibitory activity 35 [81] 

25 c-Src inhibitors anticancer activity 80 [82] 

26 different compounds boiling points 196 [83] 

[83] 27 heats of vaporization 19 

28 carboquinone derivative minimum effective dose 37 [84] 

29 cyclic peroxy ketals half maximal inhibitory concentration 18 [85] 

30 organic pollutants oxidative degradation 33 [86] 

31 degradation 33 [87] 

32 (benzo)triazoles fish toxicity 97 [88] 

33 thiophene and imidazopyridine derivatives inhibition activity of the Polo-Like Kinase 1 136 [89] 

34 substituted phenylaminoethanones average antibacterial activity 17 [90] 

[90] 

[90] 

35 average antifungal activity 17 

36 average antimicrobial activity 17 

37 acetylcholinesterase inhibitors inhibition activity 110 [91] 

38 antimony(III) complexes glutathione reductase inhibitor 14 [92] 

39 polychlorinated diphenyl ethers 298 K supercooled liquid vapor pressures 107 [93] 

[93] 40 aqueous solubility 107 

41 hexahydroquinoline derivatives calcium channel antagonist activity 13 [94] 

42 volatile organic compounds draize eye score 126 [95,96] 

43 polychlorinated biphenyls relative retention times 209 [97] 

44 drug-like compounds blood-brain barrier permeability 122 [62] 

45 protein kinase inhibitors inhibitory activity 77 [98] 

46 curcumin analogs IL6 inhibition activity 23 [99] 

[99] 47 TNF inhibition activity 23 

48 4-aminoquinoline analogues antiplasmodial activity against chloroquine-

susceptible Plasmodium falciparum  

68 [100] 

 

[100] 49 antiplasmodial activity chloroquine- resistant 

Plasmodium falciparum 

68 

50 nitrofuranyls antitubercular agents 110 [101] 

B16 melanoma = a murine tumor cell line; MCF-7 = a breast cancer cell line; 

IL6 = Interleukin 6; TNF = Tumor necrosis factor 

Evaluation Approach 

The approach presented in Figure 2 was used to 

assess the proposed Shannon’s entropy statistic. The 

values of CDF (cumulative distribution function) 

were calculated with EasyFit program (MathWave 

Technologies) for both simulated and 

experimental/observed datasets and each investigated 

distribution.

 

 

Figure 2. Flowchart illustrating the steps involved in assessment of Shannon’s statistic.

  

 INPUT DATA 

Simulated data /  

Measured/Observed property/activity 

CDF COMPUTATION 

Uniform / 

Error function &  

Generalized extreme value &  

Normal &  

Lognormal 

COMPUTATION OF STATISTICS & ASSOCIATED P-VALUES 

Anderson-Darling (AD) & Kolmogorov-Smirnov (KS) & Cramér-von Mises (CM) & 

Kuiper V (KV) & Watson U2 (WU) & Shannon’s entropy (H1) 

SCHEME 1 
AD & KS & CM & KV & WU  

SCHEME 2 
AD & KS & CM & KV & WU & H1 

 

Fisher's combined probability test 
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The computation of investigated statistics and of 

the associated p-values was done for each distribution 

and each dataset using the algorithm of the statistic-

probability association map (Figure 1) and several 

*.php programs: 

 Anderson-Darling (AD): 

http://l.academicdirect.org/Statistics/tests/AD/ 

 Kolmogorov-Smirnov (KS): 

http://l.academicdirect.org/Statistics/tests/KS/ 

 Cramér-von Mises (CM): 

http://l.academicdirect.org/Statistics/tests/CM/  

 Kuiper V (KV): 

http://l.academicdirect.org/Statistics/tests/KV/ 

 Watson U2 (WU): 

http://l.academicdirect.org/Statistics/tests/WU/ 

 Shannon’s entropy (H1): 

http://l.academicdirect.org/Statistics/tests/H1/  

The Fisher's combined probability test [54] was 

used to control the error rates using an adjusted 

significance level to diminish the possible influence 

of the positively correlated tests. All possible pairs of 

comparison adjust the significance level as α* = 

α/[q∙(q-1)/2], where q = the number of the tests. Two 

different schemes were used to test the contribution 

of H1 to the overall conclusion relating H0. The first 

one (scheme 1) includes all statistics excepting the H1 

(α1* = 0.0050, and the second one (scheme 2) 

includes all investigated statistics, inclusive H1 (α2* 

= 0.0033). Despite the fact that the input data are the 

same, each statistic (Eq(1)-Eq(6)) had its proper 

formula, formulas that are independent from each 

other as proved by Dijkstra [102]. 

3. Results and discussions 

Results on Simulated Data 

The uniform distribution was rejected at least one 

out of 45 runs by all investigated statistics for n = 15, 

20, 30, 40, and 50 (Table 2). 

Table 2. Results on simulated data: number of individual rejections and the combined tests rejections. 

n 
H0: Data follow uniform distribution. H0 rejection (α = 5%) Scheme 1 

(α* = 0.50%) 

Scheme 2 

(α* = 0.33%) AD, n (%) KS, n (%) CM, n (%) KV, n (%) WU, n (%) H1, n (%) 

15 2 (4.44) 3 (6.67) 2 (4.44) 1 (2.22) 1 (2.22) 4 (8.89) 5 (11.11) 8 (17.78) 

20 1 (2.22) 2 (4.44) 0 (0.00) 3 (6.67) 4 (8.89) 2 (4.44) 8 (17.78) 7 (15.56) 

30 3 (6.67) 4 (8.89) 3 (6.67) 3 (6.67) 2 (4.44) 3 (6.67) 2 (4.44) 2 (4.44) 

40 4 (8.89) 3 (6.67) 2 (4.44) 1 (2.22) 2 (4.44) 1 (2.22) 1 (2.22) 1 (2.22) 

50 3 (6.67) 2 (4.44) 1 (2.22) 4 (8.89) 4 (8.89) 2 (4.44) 2 (4.44) 2 (4.44) 

AD=Anderson-Darling, KS=Kolmogorov-Smirnov, CM=Cramér-von Mises,  

KV=Kuiper V, WU=Watson U2, H1=Shannon 

 

Overall, the rejection of H0 by the combined test 

of significance is observed when three or more test 

individually rejected the H0 and this behavior is the 

same with or without the inclusion of H1 statistic. In 

some cases, certain goodness-of-fit test (such as KS 

for n=15, 20, WU for n=20, H1 for n=15) test transmit 

its individual significance to the combined test. 

Results on Experimental Data 

Different behavior of H1 statistic is observed 

when the assessment is conducted on experimental 

data. The number of H0 rejections by each individual 

test varied from 0 (H1) to 21 (KV) and proved 

smallest when Shannon’s entropy was used as 

statistics (Table 3). On average, the highest 

percentage of rejections was given by Kuiper V 

statistic and was closely followed by Watson U2 

statistic. 

The results presented in Table 3 shows that the 

trend of H1 statistic is not to reject the null hypothesis 

and this behavior can be explained by its formula (see 

Eq(1)), leading to a test more tolerant to extreme 

values or outliers. This behavior could be either a 

disadvantage (the hypothesis of association is not 

rejected even if it is false) or an advantage (the 

presence of outliers, which in most of the cases are 

data collection accidents, make other statistics to 

reject the null hypothesis much easiest even if this 

hypothesis is true). Therefore, the proposed 

H1statistic is more tolerant to such errors.

Table 3. Reject H0? Number of rejections and associated percentage by statistics (at a significance 

level of 5%). 

Distribution AD, n (%) KS, n (%) CM, n (%) KV, n (%) WU, n (%) H1, n (%) 

error 9 (18.75) 12 (24.00) 11 (22.00) 19 (38.00) 17 (34.00) 0 (0.00) 

generalized extreme value 6 (13.33) 5 (10.00) 4 (8.00) 13 (26.00) 11 (22.00) 3 (6.67) 

lognormal 4 (8.00) 7 (14.00) 4 (8.00) 18 (36.00) 16 (32.00) 3 (6.00) 

normal 8 (16.67) 14 (28.00) 10 (20.00) 21 (42.00) 20 (40.00) 0 (0.00) 

AD=Anderson-Darling, KS=Kolmogorov-Smirnov, CM=Cramér-von Mises, KV=Kuiper V, WU=Watson U2, 

H1=Shannon 

http://l.academicdirect.org/Statistics/tests/AD/
http://l.academicdirect.org/Statistics/tests/KS/
http://l.academicdirect.org/Statistics/tests/CM/
http://l.academicdirect.org/Statistics/tests/KV/
http://l.academicdirect.org/Statistics/tests/WU/
http://l.academicdirect.org/Statistics/tests/H1/
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Without any exception, the median of number of 

failure to reject the H0 (p-value > 0.05 for each 

individual test) was equal with the number of 

investigated tests (5 for scheme 1, and 6 for scheme 

2, see Table 4). The variation of quartiles was more 

monotone when H1 was included in the combined test 

while the most heterogeneous behavior was seen 

when the normal distribution was investigated (Table 

4). The inclusion of H1 statistic in assessment of 

distribution smoothest the characteristics of summary 

statistics for error, generalized extreme value, and 

lognormal distributions (see Table 4).

Table 4. Failed to reject H0: median, inter-quartile ranges (1st quartile−3rd quartile), and perfect 

concordance between investigated scheme. 

Distribution 
Scheme 1 

median (Q1−Q3) 

Scheme 2 

median (Q1−Q3) 

Perfect concordance* between 

schemes, no. (% [95%CI]) 

error 5 (3−5) 6 (4−6) 30 (60 [46–74]) 

generalized extreme value 5 (4−5) 6 (4−6) 32 (64 [50–78]) 

lognormal 5 (3−5) 6 (4−6) 31 (62 [48–76]) 

normal 5 (2−5) 6 (3−6) 29 (58 [44–72]) 
* perfect concordance was defined as an agreement on H0 obtained between all tests in both scheme 

(5 tests in Scheme 1 and 6 tests in Scheme 2); 95%CI = 95% confidence interval 

To identify the behavior of proposed H1 statistic, 

the absolute difference between p-value of this 

statistic and respectively p-value of each other 

investigated statistic were counted. The p-values of 

the H1 proved closest to Anderson-Darling p-value 

for error and normal distributions (Figure 3). In the 

assessment of generalized extreme value distribution, 

the p-values of the H1 proved closest to Kuiper V 

statistic (Figure 3). 

 

 

Figure 3. Minimum absolute difference between Shannon’s (H1) p-value and p-values of other investigated 

statistics (AD=Anderson-Darling, KS=Kolmogorov-Smirnov, CM=Cramér-von Mises, KV=Kuiper V, and 

WU=Watson U2). 

With the exception of generalized extreme value 

distribution, for several datasets opposite conclusions 

regarding H0 was drawn by H1 statistic compared to 

all other investigated statistics (see Figure 4): 

 Error distribution: set04, set26, and set34. 

 Lognormal distribution: set04. 

 Normal distribution: set04, set13, set14, 

set15, set26, and set34.
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Figure 4. Shannon’s opposite conclusion by example: a) set04 (H0 rejected by AD=Anderson-Darling, 

KS=Kolmogorov-Smirnov, CM=Cramér-von Mises, KV Kuiper V, and WU=Watson U2 with p<0.0001 

while Shannon’s statistic failed to reject H0 with p=0.4124 for error distribution, p=0.9999 for lognormal 

distribution, and p=0.9996 for normal distribution); b) set13 (H0 rejected by AD, KS, CM, KV, and WU 

with p<0.0001 while Shannon’s statistic failed to reject H0 with p=0.9999 for both error and normal 

distribution); c) set26 (H0 rejected by AD, KS, CM, KV, and WU with p<0.0001 while Shannon’s statistic 

failed to reject H0 with p=0.8266 for error distribution, p=0.9999 for normal distribution); c) set34 (H0 

rejected by AD, KS, CM, KV, and WU with p<0.04 while Shannon’s statistic failed to reject H0 with 

p=0.7878 for error distribution, p=0.9423 for normal distribution). 

The overall combine test showed different results 

in the assessment of investigated distributions in both 

investigated scheme when the analysis was conducted 

at adjusted significance levels (Table 5). 

Table 5. Reject H0? Results of overall combine test of significance. 

Distribution 
Scheme 1 Scheme 2 

no. % [95%CI] no. % [95%CI] 

error 14 28 [16‒42] 11 22 [30‒58] 

generalized extreme value 7 14 [6‒26] 5 10 [4‒22] 

lognormal 10 20 [10‒34] 8 16 [6‒30] 

normal 16 32 [20‒46] 15 30 [18‒44] 

The inclusion of Shannon’s statistic in the overall 

combine test has the smallest effect on the normal 

distribution, decreasing the rejection of H0 by 2%, 

closely followed by generalized extreme value and 

lognormal distribution, decreasing the rejection of H0 

by 4%. The largest effect on the overall combined test 

induced by the H1 statistic was observed on error 

distribution, for which the decreasing the rejection of 

H0 by 6%. 

The concordance analysis (identical conclusion in 

both scenarios) shows the highest value for 

generalized extreme value distribution and the lowest 

value for normal distribution (Table 4). The value of 

probability associated with the rejection of the tested 

hypotheses systematically becomes larger in the 

scheme that includes the Shannon’s entropy. The 

analysis of the Shannon’s p-value relative to each 

other investigated statistics showed that these values 

are closest to Kuiper V for normal distribution, to 

Cramér-von Mises for lognormal distribution, to 

Kolmogorov-Smirnov for generalized extreme values 

distribution, and respectively to Kuiper V and Watson 

U2 for error distribution (see Figure 3).  

In our analysis, we investigated how the combined 

test aggregate the information from different tests on 

the same H0. The main shortcoming of this approach 

is given by its asymmetrical sensitivity to small p-

values leading to the increase of type I error (incorrect 

rejection of H0) [103]. To diminish this shortcoming, 

an adjustment of the significance level was used, 

which could be seen as too conservative approach. 

However, this adjustment protects against the danger 
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of overclaiming the significant results but with the 

cost of the possibly underclaiming. The problem of 

combining test of significance have been debated in 

the scientific literature mainly in regards of testing 

means [104-106]. Several methods have been 

introduced, the main known being the Stouffer’s 

method (applied to one-tailed tests, also known as Z-

transform test when the p-values are converted as 

normal standard derivatives [107]), and its derivate as 

weighted Z-method [108,109] mainly used in meta-

analysis. Several different approaches have been 

published but no consensus exists in the scientific 

literature in regards of performances of these tests. 

Some authors sustain that the Fisher and/or its 

derivate [110] is the best while other authors 

sustained that other tests are best performing 

combined tests of significances [111,112]. However, 

our team works in this moment to identify as many as 

possible of such approach, to test them and to apply 

them to investigate the performances of H1 statistics. 

Furthermore, the new introduce H1 statistic need to 

be compared with other similar approaches that use 

entropy as estimator in testing the distribution of data. 

4. Conclusions 

The contribution of the proposed H1 statistic to 

the final decision in assessment of the probability 

distributions has been investigated and a general 

tendency of the H1 to counterbalances the tendency 

of rejection the null hypothesis by the combined test 

of significance is observed on experimental data. The 

effect, however, could be insignificant since the 

practical outcome in the number of rejections is 

amended downwards in only 3 out of 50 cases. 

Furthermore, this effect of the H1 statistic must be 

assessed on different constrains and conditions. 
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